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Abstract
Understanding how genetically encoded rules drive and guide complex neuronal
growth processes is essential to comprehending the brain’s architecture, and agent-
based models (ABMs) offer a powerful simulation approach to further develop this
understanding. However, accurately calibrating these models remains a challenge.
Here, we present a novel application of Approximate Bayesian Computation (ABC)
to address this issue. ABMs are based on parametrized stochastic rules that describe
the time evolution of small components–the so-called agents–discretizing the system,
leading to stochastic simulations that require appropriate treatment. Mathematically,
the calibration defines a stochastic inverse problem. We propose to address it in a
Bayesian setting using ABC. We facilitate the repeated comparison between data
and simulations by quantifying the morphological information of single neurons with
so-called morphometrics and resort to statistical distances to measure discrepancies
between populations thereof. We conduct experiments on synthetic as well as exper-
imental data. We find that ABC utilizing Sequential Monte Carlo sampling and the
Wasserstein distance finds accurate posterior parameter distributions for represen-
tative ABMs. We further demonstrate that these ABMs capture specific features of
pyramidal cells of the hippocampus (CA1). Overall, this work establishes a robust
framework for calibrating agent-based neuronal growth models and opens the door
for future investigations using Bayesian techniques for model building, verification,
and adequacy assessment.
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1 Introduction

The brain is the human’s most complex organ and comprises roughly 86 billion neu-
rons (Azevedo et al. 2009; Herculano-Houzel 2009), each of which is connected to
hundreds or thousands of others via synapses. Brain regions accommodate different
neuron types, providing specialized function for specific tasks. For example, the pri-
mate neocortex ismadeupofpyramidal cells (70%) aswell as calretinin, calbindin, and
parvalbumin-expressing interneurons (30%) (DeFelipe and Fariñas 1992; Markram
et al. 2004; Elston 2011; DeFelipe 1997; Torres-Gomez et al. 2020). Researchers
differentiate neurons by their location in the brain and their morphology, i.e., their
shape and form, but even neurons originating from the same species and brain region
may show significant morphological differences (Deitcher et al. 2017). Theoretical
considerations, e.g., regarding the information capacity of the genome, have led vari-
ous scholars to conclude that the brain’s wiring and the neurons’ morphologies likely
emerge from simple developmental rules (Linsker 1986; Hassan and Hiesinger 2015;
Zador 2019). Mechanistic, agent-based neuron growth models hold the potential to
investigate this hypothesis and unlock a deeper understanding of how neurons grow
and build their elaborate networks.

A rich set of mathematical models has been established to capture the diverse
properties of neurons, contributing to a more comprehensive understanding of these
complex cells. Early research efforts focused on understanding responses to exter-
nal electrical stimuli, leading to the development of influential models such as the
Hodgkin-Huxley model (Hodgkin and Huxley 1952). Simple, rate-based models cap-
ture the signal processing capabilities of neurons embedded in networks and became
the workhorse of modern artificial intelligence applications, driving much of success
in processing images and text (LeCun et al. 2015). Conceptually different methods
have been developed to recreate structures in line with the characteristic neuronal
morphologies. Notable examples use L-systems (Lindenmayer 1968; Hamilton 1993;
Ascoli et al. 2001), statistically sample components from data (Torben-Nielsen et al.
2008), or derive the structure from optimal wiring principles (Cuntz et al. 2010).While
these approaches successfully model the morphology, they provide limited insights
into the fundamental processes driving the growth (Zubler and Douglas 2009).

In this work, we focus on mechanistic, agent-based models (ABM) simulating
neuronal growth. In contrast to previously-mentioned approaches, such models are
based on first principles, act on local information, and simulate growth in a biologically
realistic manner. The simulation begins with a simple initial configuration of a single
neuronal soma. Afterward, the dendrites and the axons form and extend from the
soma to shape the neuron. The models are based on discrete compartments, so-called
agents. These agents act independently based on internal state variables and external,
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local information. Stochastic rules define their behavior, e.g., the rules may encode
stochastic branching processes or random walk models. A comprehensive description
of the mathematics governing these mechanistic ABMs may be found in the work of
Zubler and Douglas (2009). Ultimately, these models yield artificial neurons, which
can be compared to real neurons. This comparison is non-trivial and carried out by
reducing the neurons to their morphometrics (Torben-Nielsen and Cuntz 2014), i.e.,
a set of quantities of interest that capture the structural information of the neuron.

Early ABMs and related modelling studies for neuronal growth explored and
explained various developmental aspects such as cell proliferation, polarization, and
migrations (Ryder et al. 1999; Shinbrot 2006; Samuels et al. 1996; Cai et al. 2006)
as well as growth cone steering and neurite extension (Krottje and van Ooyen 2007;
Goodhill et al. 2004; Kiddie et al. 2005). Later works composed increasingly extensive
models, e.g., Bauer et al. (2014a, b) presented models probing how connectivity arises
in the neocortex and how first principles can lead to winner-takes-it-all circuits. Using
similar techniques, Kassraian-Fard et al. (2020) presented an ABM explaining axonal
branching. More recently, Shree et al. (2022) observed growing neurons in-vivo over
time and derived a detailed ABM for sensory neurons.

While different growth models have been proposed, inferring their (latent) param-
eters presents a significant challenge because the models are strongly stochastic and
data is usually limited. Mathematically, we face a stochastic inverse problem: given
some data yobs, find the distribution of the model parameters p(�|yobs) which best
explain the data. Simple optimization-based procedures for identifying parameters
may give false confidence in their values as they typically do not account for uncer-
tainties. However, Bayesian methods have shown significant advances over the past
three decades (Martin et al. 2020, 2024), such that solving the inverse problem for
neuronal structures in the presence of uncertainties is within reach.

In this work, we advocate embedding the growthmodels into a Bayesian framework
to better understand the problem’s characteristics, fusing ideas from theoretical neuro-
science, computer science, and statistics to address the stochastic inverse problem.We
describe an abstract concept termed resource-driven neuron growth model motivated
through experimental findings highlighting the effect of the neuron’s transport sys-
tem on its morphology and consider two simple representatives thereof. We propose
using Approximate Bayesian Computation (ABC) (Tavaré et al. 1997; Pritchard et al.
1999; Beaumont et al. 2002; Marjoram et al. 2003; Csilléry et al. 2010; Beaumont
2010; Sisson et al. 2007, 2019) combined with a selected set of morphometrics and
statistical distances (Bernton et al. 2019; Nadjahi et al. 2020; Jiang 2018; Fujisawa
et al. 2021) to find approximations to the posterior distribution p(�|yobs). To this
end, we employ Del Moral’s SMCABC algorithm (Del Moral et al. 2012) based on
sequential Monte Carlo (SMC) sampling (Del Moral et al. 2006) with modifications
to the kernel and the distance metric as proposed by Bernton et al. (2019). These
modifications allow us to bypass the definition of summary statistics and measure the
discrepancy between data and simulation directly with the Wasserstein distance (or
similar). The algorithm is inherently parallel and, thus, scalable on modern comput-
ing resources. We leverage the MPI-parallel implementation of ABCpy (Dutta et al.
2021) and embed computational models implemented with the highly efficient BioDy-
naMo (Breitwieser et al. 2021, 2023) framework into the inner loop of the algorithm
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resulting in a high-throughput implementation. The data from the study is retrieved
from neuromoropho.org (Ascoli et al. 2007), the most extensive database for neuronal
morphologies. We demonstrate that the method can find adequate posterior distribu-
tions through computational experiments on synthetic data, i.e., data generated via
the models, and subsequently show that the models can simulate pyramidal cell mor-
phologies in agreement with experimental data collected by Benavides-Piccione et al.
(2019). We share our implementation (see Duswald et al. 2024)), and future research
may leverage the framework to calibrate different models efficiently.

The article is structured as follows. We begin with a technical overview of the
project, briefly explaining which components are relevant and how they connect.
Afterward, we explain them in detail, i.e., we discuss neuron growth models, data
sources, sensitivity analysis, and ABC algorithms. We then show numerical exper-
iments that investigate the models’ stochastic components and sensitivities before
approaching the inverse problem with synthetic and experimental data. On synthetic
data, we explore how the choice of morphometrics, statistical distances, and sample
size affect the algorithm. We conclude the manuscript by critically reflecting on the
results and embedding the findings in a broader context.

2 Materials andmethods

Our principal goal is to determine the parameters and uncertainties of mechanistic
neuron growth models for given data. We choose to address the problem in a Bayesian
setting. Given a stochastic, computational model parameterized through parameters
� ∈ R

N , we strive to find the posterior distribution p(�|yobs), which is the probabil-
ity distribution describing the parameters � after observing data yobs. The posterior
encapsulates all available information on the parameters, including the most probable
values and associated uncertainties. Formally, the solution to this problem is given by
Bayes’ theorem

p(�|yobs) = p(yobs|�)p(�)

p(yobs)
, (1)

which defines the posterior in terms of the following three components: the probability
distribution of the observed data p(yobs), the prior distribution of the parameters p(�)

containing all available knowledge about the parameters prior to the calibration, and the
likelihood function p(yobs|�) which describes how likely observations yobs are under
given parameters �. In practice, i.e., in all but the most straightforward cases, finding
a closed-form solution to (1) is impossible. Hence, we numerically approximate the
posterior distribution with algorithms whose details are presented and discussed in
later sections.

As we face a stochastic inverse problem, our study consists of four major
components: mechanistic neuron growth models (Sect. 2.1), data sources and pro-
cessing (Sect. 2.2), a numerical method solving (1) (Sect. 2.3), and efficient software
implementations and interfaces (Sect. 4). In the following, we detail the different com-
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Fig. 1 Conceptual overview of the calibration methodology. We first define the quantities of interest (QoI
1, . . . , J ) for the neuronal growth simulation. The data is then obtained from either of two data pipes: A
experimental data or B synthetic data ( 1 to 4 ). After processing and structuring the data (J QoIs for
K neurons), we provide an initial guess of the model parameters–the prior parameter distribution–to the
SMCABC algorithm (Del Moral et al. 2012; Bernton et al. 2019). The algorithm (Del Moral et al. 2012)
describes the parameter distribution with a set of N particles ( 0 ) and enters into a loop ( 1 to 3 )
iteratively moving particles closer to the posterior. Adaptively lowering the tolerance level εi ( 1 ) ensures
efficient positional updates of the particles in ( 3 ) (Del Moral et al. 2012). For such updates, the algorithm
executes the steps 1 to 5 simulating M ′ neurons under the model and computing the statistical distance
to the data

ponents and their links. Figure1 gives an overview and shows how the components
interact.

2.1 Mechanistic neuron growthmodels

This work is concerned with 3D agent-based, mechanistic neuron growth models.
Figure2 displays an example of such a simulation. Panel (a) illustrates the ABM-
discretization and the simulated neuron in an early stage of the simulation, panel (b)
depicts the final simulated neuron, and (c) shows an experimentally observed pyra-
midal cell in the mouse hippocampus (Benavides-Piccione et al. 2019). The initial
conditions of the simulation are not displayed but may be obtained by stripping all
agents from (a) not directly attached to the soma. We will first introduce some bio-
logical background, continue presenting the ABM discretization, and then explain the
high-level abstraction of a resource-driven neuron growth model. Lastly, we consider
two simple model realizations corresponding to the upper and lower parts of panel (b)
relevant to the subsequent numerical experiments.
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Fig. 2 3DMechanisticABMfor neuronal growth. Panel a shows the agent-based discretization and the early
stage of a neuron simulation (pyramidal cell). The center is the spherical soma (cell body). The dendrites
are discretized with small, cylindrical agents. Typically, the tips drive the growth (Shree et al. 2022); hence,
we differentiate between the general and tip agents. The agents define a tree-like structure with different
segments and branches. b Pyramidal cell at the end of the simulation. c Experimental pyramidal cell in the
mouse hippocampus observed by Benavides-Piccione et al. (2019) ( NMO_147071)

2.1.1 Biological background

Despite a good understanding of the neurons’ properties and their networks, the pro-
cesses by which neurons develop their morphologies are only partially comprehended.
Aneuron’s journey begins during neurogenesis-the process inwhich newneurons form
from neural stem or progenitor cells. Afterward, the neuron begins to extend dendrites
and axons from the soma. The tips of dendrites and axons display a growth cone, a
highly polarized, dynamic structure that guides the growth. External substances serve
as attracting and repulsive guidance cues. Examples include netrins, semaphorins,
ephrins, and the brain-derived neurotrophic factor. Neurons integrate into complex
networks and, depending on the network’s need, they may begin extending or retract-
ing parts of their dendritic or axonal outgrowth.

Ultimately, growth requires resources; consequently, the morphology strongly
depends on how resources get distributed within the neuron. The neuron’s transport
system is primarily built from three superfamilies of so-called molecular motor pro-
teins: kinesins, cytoplasmic dynein, andmyosins. These proteins convert energy stored
in adenosine triphosphate into mechanical energy, which they use to move along the
cell’s cytoskeletal tracks carrying cargo. Tubulin is a cargo often considered in this
context since it is a building block for the cytoskeleton and, thus, required for growth.
It has been the driving factor for a set of mathematical models in the past (van Ooyen
et al. 2001; McLean et al. 2004; Graham and van Ooyen 2006; Hjorth et al. 2014).
The influence of the motor proteins has been extensively reviewed by Hirokawa et al.
(2010), concluding that they play a significant role in the intercellular transport, control
of neuronal function, morphogenesis, and survival. They also point out that expres-
sion levels differ from neuron to neuron (Kamal et al. 2000), hinting that transport
systems differ between neurons. Experimental evidence appears in multiple studies.
Satoh et al. (2008) showed that gene mutations affecting the motor proteins lead to
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significant morphological changes in the dendritic arbor in drosophila melanogaster,
e.g., an overall shorter arbor and different branching pattern. Zheng et al. (2008) inde-
pendently observed identical effects. Moreover, Hirokawa et al. (2009) demonstrated
that suppressing Kif2a, part of the kinesin superfamily, caused abnormal axon branch-
ing, leading to significantly more branching points in the axon, see (Hirokawa et al.
2009, Fig. 5c). Ryu et al. (2006) observed that myosin IIB influences the morphology
of dendritic spines, and Lyons et al. (2009) found that suppression of Kif1b hinders
the normal outgrowth of axons in zebrafish. We conclude that differences in the gen-
eration and distribution of resources significantly impact the morphology of different
neurons. This should be reflected in themathematicalmodels and the resources become
key-attributes for the agents.

2.1.2 Agent-based neuron discretization

We consider growth that starts from a few neurites attached to the soma, where the
latter is stationary, i.e., it does not change throughout the simulation. The neurites are
spatially discretized into cylindrical agents representing small dendritic tree compart-
ments; recall Fig. 2a. The agents reside in a tree-like data structure, i.e., each agent
has one mother and either zero, one, or two daughters. If an agent has no daughter, we
refer to it as a tip agent. These are particularly important because the tips primarily
drive the growth (Shree et al. 2022). For all models, a cylindrical agent is characterized
by its position, i.e., the start and end point of the cylinder, as well as their diameter.
The orientation and length are implicitly contained in the start and end points.

The total simulation time T is discretized into small time steps �t of equal dura-
tion. During each time step, the agents independently execute their stochastic rules
governing their behavior. These rules may depend on local information, such as sub-
stance concentrations or gradients.Moreover, the rulesmay further depend onwhether
the agent has daughters; in other words, the rules may differ between regular and tip
agents. It is desireable to parametrize the rules such that different choices for �t yield
statistically identical (or at least similar) results. We further note that the stochastic
processes encoded in the rules may restrict �t to a specific range.

This modeling approach is generally considered to be biologically feasible because
all agents act on locally available information rather than globally optimizing specific
properties. Algorithm 1 in Appendix C gives an overview of the simulation logic of
ABMs implemented with BioDynaMo (Breitwieser et al. 2021). By implementing the
models with BioDynaMo, we implicitly include the neurons’ mechanistic properties
into the model. In this work, these properties play a minor role and we refer to Zubler
and Douglas (2009) for additional details.

2.1.3 Resource-driven neuron growth model

We introduce a high-levelmodel description termed the resource-driven neuron growth
model. It is rooted in the realization that the molecular motors and further transport-
related quantities differ in their expression levels between neuron types and the fact that
they influence the morphology. Various models presented in the literature, e.g., (Shree
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et al. 2022; Kassraian-Fard et al. 2020), fit within the descriptions; here, we attempt
to phrase it in a general parametric way.

The model needs to account for (1) the migration of the tips (elongation and retrac-
tion), (2) external guidance cues, (3) resource availability and transport, and (4) rules
for branching and bifurcating. Different external guidance cues are described with
scalar fields φi (x, t), and different resources of the agent- j are denoted as r ( j)

i .
Shree et al. (2022) observed that tips either elongate, stall, or retract. They sug-

gest a model defining the stochastic transitions between the three states. Additionally,
they assume that contact of tips with other neurites causes them to retract. When
the tip retracts, it simply follows the path; when elongating, the tips execute a per-
sistent, biased, random walk (biased through the gradient of external guidance cues;
see (Codling et al. 2008; Hannezo et al. 2017) for details on such walks). We add that,
in general, the state transitions may depend on resource availability. Furthermore,
the state may influence the resource availability, e.g., it seems natural to assume that
elongation reduces and retraction frees resources.

The time dependent resource distribution can be modeled in vastly different ways
ranging from heuristic rules (Kassraian-Fard et al. 2020; van Ooyen et al. 2001) defin-
ing how the resources propagate when branching or bifurcating to intricate transport
equations (Graham et al. 2006; McLean et al. 2004; Hjorth et al. 2014; Qian et al.
2022). Both approaches may capture the branches’ competition for resources. Gener-
ally, branching is modelled as a (Poisson-like) stochastic process and the probability
of branching per time step may depend on resource availability or external guidance
cues. For example, the branching probability may increase with decreasing resource,
leading to more, smaller branches towards the distal end.

These high-level requirements allow the construction of complex models with a
high degree of incorporated biological information. Nonetheless, the key concern of
this work is approximately solving the stochastic inverse problem, and we do not
strive to create the biologically most detailed model. We therefore restrict ourselves
two particularly simple representatives of such a model, which trace back to (Zubler
and Douglas 2009; Breitwieser et al. 2021). Both models use a single resource type,
one guidance cue, and only consider the elongating and idle states. We describe the
algorithm assuming some (simple) initial neuron structure is present, e.g., a structure
as in Fig. 2a.

Example: Model 1. We first note that only tip-agents actively change; others remain
untouched. Furthermore, only tip-agents whose resource satisfies r > rmin change;
thus, if the resource of a tip-agent falls below the threshold rmin, it becomes idle as
well. In other cases (tip-agent with a sufficiently large resource), the agent elongates in
the direction of a vector �d which is composed out of (1) a random component, (2) the
current orientation, and (3) the direction of ∇φ at the agent’s position. Elongation
means that the endpoint of the cylinder is shifted by v · �d/|| �d||2, where v is the
elongation speed parameter. Since the elongation models a notion of stretching, the
resource is decreased, i.e., r(ti+�t) = r(ti )−R, where R is the resource consumption
parameter. Each tip-agent can also branch with a constant probability pbra . The two
daughters created during branching inherit the resources of the mother.
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A simulation of the branching process is depicted in Fig. 2b, where the structures
below the somaare generatedwithModel 1.The symmetric resource distributionyields
a balanced tree structure, e.g., two daughters of the same mother progress similarly. A
pseudo-code representation of this description is given in Appendix C, Algorithm 2.

Example: Model 2. Model 2 is similar to Model 1. In contrast to Model 1, all agents
in Model 2 keep decreasing their resources until they reach or fall (slightly) below
rmin. Additionally, the branching rules differ, i.e., the neurite continues in a straight
line and adds a new branch rather than symmetrically splitting into two. Sometimes
this behavior is referred to branching, while Model 1’s symmetric splitting is referred
to as bifurcating. The asymmetry of the branching also reflects in how the resource is
distributed; while the agent of the extended branch inherits the resource of the mother,
the agent of newly-created branch initializes it to a fixed resource value of r0, an
additional parameter of Model 2. Hence, the resource distribution is asymmetric. We
refer to Kassraian-Fard et al. (2020) for a more involved asymmetric model.

While the differences betweenModel 1 and 2 are subtle, these differencesmay result
in vastly different structures, e.g., Fig. 2b shows the structures arising from Model 2
above the soma. The asymmetry of the resource distribution while branching leads
to a more extended main branch with different shorter outgrowths. A pseudo-code
representation of this description is given in Appendix C, Algorithm 3.

2.2 Data sources and processing

In this study, we consider two types of datasets: synthetic and experimental data. The
former serves as a test case for the algorithm and the choice of morphometrics; the
latter is used to identify which models can describe the morphology of real neurons.
The comparison of different neuronal structures is facilitated via the morphometrics.

2.2.1 Morphometrics

Morphometrics generally refers to the study of the size and shape of objects.We restrict
ourselves to neurons and use the termmorphometrics to describe features that quantify
the morphology. The morphometrics attempt to answer the following question: How
can we map a given neuron morphology onto a vector x ∈ R

n that adequately char-
acterizes the neuron? This question is inherently challenging because neurons show
very complicated shapes and forms. A short overview of popular morphometrics may,
for instance, be found in the work of Torben-Nielsen and Cuntz (2014 Table 1.1) or
Deitcher et al. (2017, Table 2). Popular features are total length, number of branches,
mean branching length, and many more. Table 1 gives an overview of the simple
morphometrics used in this work.

Ifwe abstractly consider themorphometrics (or a combination thereof) as amapping
M projecting from the space of neuronalmorphologiesN intoRn , i.e.,M : N → R

n ,
then the mapping does not possess an inverse. In other words, it is impossible to
reconstruct the morphology from the morphometrics; however, similar neurons map
to points that are close in R

n . In general, the mapping consists of a combination of
morphometrics. Describing the different morphometrics (e.g., branching length) as a
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Table 1 Overview of the subset
of morphometrics used in this
work

ID Morphometric

M1 Number of segments

M2 Mean segment length

M3 Standard deviation of segment length

M4 Total dendritic length

Table 2 Overview of the experimental datasets collected by Benavides-Piccione et al. (2019) retrieved from
neuromorpho.org (Ascoli et al. 2007)

Dataset ID Cardinality Neuron type Species brain region

D1 50 Pyramidal Human, Hippocampus, CA1

D2 50 Pyramidal Mouse, Hippocampus, CA1

map Mi : N → R
ni , we define the morphometrics mapping as

M = M1 × · · · × Mk : N → R
n = R

n1+···+nk . (2)

While the mathematical nature of M may be complicated, the algorithmic imple-
mentation for computing x = Mi (y ∈ N ) is usually straightforward. Following the
jargon of predictive computational sciences, we will refer to x as quantity of interest
(QoI) and use this term interchangeably with the morphometrics.

2.2.2 Synthetic data

We choose a stochastic computational model to generate a synthetic dataset by
repeatedly executing it with different random seeds. M model runs will result in M
distinctively different neuron samples. For each sample, we compute the morphomet-
rics either with custom, unit-tested C++ code integrated into the model evaluation or
offline with NeuroM (Palacios et al. 2021). This Python package allows the analysis
of neuron morphologies saved in the SWC format and the extraction of their morpho-
metrics. Finally, we structure the data in a spreadsheet-like data structure (see Fig. 1)
to conveniently retrieve a given neuron’s morphometrics.

2.2.3 Experimental data

For the experimental data, we proceed akin to the synthetic data. We retrieve the
data from neuromopho.org (Ascoli et al. 2007), an online database storing roughly 260
thousand digital reconstructions of neurons (as of October 2023). Typically, we select
specific experiments and references or queries based on neuron type, species, and brain
region.NeuroMorphoprovides full access to the data; thus,we retrieve a set of neuronal
morphologies in the SWC file format after selection. We use NeuroM (Palacios et al.
2021) to verify that the morphologies are correct and that no errors in the file could
harm the results. Subsequently, we extract the morphometrics and organize the data
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in a spreadsheet format. We consider two different datasets for our computational
experiments. Table 2 gives an overview of them.

2.3 Numerical methods

The third cornerstone of this work are numerical methods fostering the understanding
of the model’s inherent stochasticity as well as those (approximately) solving the
statistical inverse problem defined in (1). We use sensitivity analysis algorithms to
understand the models’ behavior due to parameter variations and verifying which
QoIs are informative for the parameter inference. The inference is conducted with
Approximate Bayesian Computation.

2.3.1 Sensitivity analysis

Sensitivity analysis (SA) measures how strongly individual parameter influence the
prediction of specific QoIs of a complex mathematical model (Saltelli et al. 2008). In
this work, we employ a global Sobol SA.Wefirst define the (bounded) parameter space
� for a givenmodel.WeuseSaltelli’smethod (Saltelli 2002; Saltelli et al. 2010) to draw
K samples from �. Afterward, we use the model to generate a synthetic dataset of M ′
neurons for each sample drawn. We determine the QoIs and subsequently compute
their expected value E[QoI]. We use Sobol’s method (Sobol 2001) to estimate the
sensitivity indices S1 and Stot together with their 95% confidence intervals. Here,
S1 is the index indicating how much of the variance in a QoI can be attributed to a
given parameter (first-order sensitivity). The index Stot accumulates the first-order and
higher-order indices to give an idea of the importance of a parameter; it is called the
total-effect index. As the sensitivity measures variance, it may indicate which QoIs
contain relevant information for parameter inference.

2.3.2 Bayesian computation

Bayesian computation attempts to find numerical solutions and approximations to
the Bayesian inverse problem (1). Prominent candidates are Markov Chain Monte
Carlo (MCMC) methods (Brooks et al. 2011) such as the Metropolis–Hastings algo-
rithm (Metropolis et al. 1953; Hastings 1970) or Gibbs sampling (Geman and Geman
1984; Gelfand and Smith 1990). These methods are, however, limited to a small subset
of real-world problems–the ones with tractable likelihood p(yobs|�). Nevertheless,
many meaningful problems have an intractable likelihood, i.e., there may not be a
closed form, or it may be too expensive to evaluate. This realization gave rise to a set
of methods commonly referred to as likelihood-free methods. Instead of evaluating the
likelihood, the algorithms in this category operate under the assumption that simulating
data under the model (or a surrogate thereof) facilitates an understanding of the like-
lihood. Representatives for these algorithms are Bayesian synthetic likelihood (Price
et al. 2018), specific versions of Variational Bayes (Beal and Ghahramani 2003; Jor-
dan et al. 1999; Blei et al. 2017), Integrated nested Laplace (Rue et al. 2009), and,
possibly the most popular one, Approximate Bayesian computation (ABC) (Tavaré
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et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002; Marjoram et al. 2003; Csilléry
et al. 2010; Beaumont 2010; Sisson et al. 2007, 2019). In this work, we focus exclu-
sively on ABC, which has proven to facilitate successful calibration in the context of
ABMs in biological applications, e.g., (Lambert et al. 2018; Wang et al. 2024). For
more information on the historical development of Bayesian computation, we refer
to Martin et al. (2020, 2024) and Sisson et al. (2019, Chapter 2).

2.3.3 Approximate Bayesian computation

ABC is based on the fundamentally simple idea of simulating data ysim under the
model and comparing its output against the observed data yobs. ABC algorithms must
find N simulations close to the data to obtain a Monte Carlo approximation to the
posterior. Whether samples are accepted or not depends on a criterion involving a
distance metric d and a function η : Rn → R

m (m � n) called summary statistics.1

Simulations are considered close if

d(η(yobs), η(ysim)) < ε , (3)

where yobs and ysim denote datasets, i.e, they containM andM ′ k-dimensional random
variables, respectively. The functionη summarizes their statistics, allowingus to search
for close points in a lower dimensional space, significantly speeding up the search. For
instance, we may calibrate the parameter m of a Gaussian model y ∈ R ∼ N (m, σ )

by choosing η =
(∑M ′

i=1 yi
)

/M ′ since the mean adequately summarizes the statistics

of the data.
Choosing appropriate or even sufficient summary statistics for arbitrary models

remains one of the biggest challenges when employing ABC in practice. To over-
come this limitation, Bernton et al. (2019) suggested using theWasserstein distance to
directlymeasure the discrepancy between simulated andobserved data. Their approach
generalizes the use of order statistics to arbitrary dimensions. The Wasserstein dis-
tance between two probability distributions measures how much work is necessary to
turn one into the other. Hence, it is often called earth-movers distance and is computa-
tionally related to optimal transport problems. The distance is sometimes also called
the Kantorovich-Rubinstein metric. Other authors promoted similar ideas around the
same time: Park et al. (2016) suggested using MMD, Genevay et al. (2018) used
Sinkhorn divergences, and Jiang (2018) employed the Kullback–Leibler divergence.
Later work considered the sliced-Wasserstein distance (Nadjahi et al. 2020) and γ -
divergence (Fujisawa et al. 2021) targeting certain shortcoming of other distances.

The different statistical distances have similar effects in the ABC context but their
interpretation differs; for instance, KL and γ divergence measure the information loss
when one distribution is used to approximate another. Moreover, their naming conven-
tion highlights a subtile mathematical difference; the Wasserstein distance is a metric

1 The ABC literature often refers to QoIs that summarize the statistical characteristics of a simulation (e.g.,
M2) as summary statistics. To avoid any ambiguity in the terminology, we refer to values quantifying the
simulated system’s properties and statistics as QoIs or morphometrics and use the term summary statistics
exclusively for η.
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while KL and γ represent a divergence. The former is therefore non-negative, sym-
metric, and satisfies the triangle equation while the latter share the non-negativity
but are non-symmetric and do not obey the triangle equality (e.g., (Amari 2016,
Chapter 1)). Their different definitions yield qualitatively different behavior; e.g.,
considering two multivariate normal distributions N1(μ1, 
1) and N2(μ2, 
2), the
Wasserstein distance scales linearly with ||μ1 − μ2||2 (Dowson and Landau 1982),
whereas straightforward calculation shows that the KL divergence scales quadratically
with it.

Besides defining appropriate metrics for comparing simulated and observed data,
designing algorithms that efficiently propose suitable samples has been a long-standing
challenge in ABC. Over the past two decades, researchers derived many different
ABC algorithms (Csilléry et al. 2010; Sisson et al. 2019) and Sequential Monte Carlo
(SMC) samplers (Del Moral et al. 2006, 2012) became a potent tool. SMC samplers
represent the parameter distributionwith N particles in the correspondingvector space.
Instead of directly moving from the prior to the posterior, SMC algorithms propagate
the particles through many intermediate probability distributions that change slowly
from iteration to iteration, keeping the sampling efficient. Effectively, the sequence of
distributions corresponds to a sequence of thresholds in the acceptance criterion (3),
i.e., the sampler sequentially moves through distributions defined by the thresholds

ε0 = ∞ > ε1 > · · · > εk = ε . (4)

First, the particles are sampled from the prior (ε0). By reducing εi from iteration to
iteration, the posterior approximation through particles improves from iteration to
iteration until eventually reaching the prescribed quality defined via εk . Del Moral’s
algorithm (Del Moral et al. 2006, 2012) bypasses the a priori definition of the approx-
imation levels εi by demanding that the effective sample size (ESS) of iteration i + 1
is a certain fraction α ∈ (0, 1) of the ESS of iteration i . The threshold εi+1 can be
adaptively computed from the ESS, εi , and α (see (Del Moral et al. 2012, Eq. 12) for
details).

To this end, we use Del Moral’s SMCABC algorithm (Del Moral et al. 2006,
2012) with modifications proposed by Bernton et al. (2019), i.e., we favor statistical
distances over summary statistics and choose the arguably more efficient r-hit kernel
(r = 2) (Lee 2012; Lee and Latuszynski 2014). We choose to use N = 210 particles
and α = 0.6.

To assess the quality of the resulting posterior distribution, we perform a predictive
check. This check involves drawing samples from the posterior, evaluating the model
for each sample, and computing the QoIs. We then compare the simulated QoIs to
the data; since the QoIs form a high dimensional space, we show the marginals of the
distributions, i.e., the projection on one coordinate axis in the QoI space.

We emphasize that ABC only yields an approximation of the actual posterior dis-
tribution since it involves several assumptions. First, the bound ε appearing in the
distance criterion (3) introduces an approximation: if ε = 0, the ABC algorithms
would sample from the true posterior; however, for ε > 0, the algorithms draw sam-
ples from an approximation to the true posterior. Instead of reaching a desired target ε,
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Fig. 3 Error of the Wasserstein distance: We compare the numerical estimation of the Wasserstein distance
between two data sets of cardinality N and M. The datasets are sampled from multivariate normal distribu-
tions of different dimensionality. They differ in their mean, i.e., a zero vector and a vector filled with ones,
but share the covariance matrix Ci j = δi j + 0.2 · (1− δi j ). For each combination (N, M), we sample 1000
datasets. The confidence interval in a highlights the area between the first and third quartiles. Numerical
computation follows (Flamary et al. 2021; Dutta et al. 2021; Bonneel et al. 2011), the analytic solution was
discovered by Dowson and Landau (1982)

the algorithm is often stopped after a fixed amount of dataset simulations contributing
to the same error category. Second, the use of summary statistics introduces another
level of approximation. This also holds for statistical distances; for instance, we need
a sufficient number of data points in both sets to accurately estimate the Wasserstein
distance between two distributions. Figure3 illustrates this problem by displaying the
relative error |Wtrue−Wnum|/Wtrue of the numerically computedWasserstein distance
for two multivariate Gaussian distributions. Lastly, the approximation of the posterior
in terms of particles and kernel choice may affect the approximation (Sisson et al.
2019).

2.4 Software implementation and interfaces

We leverage the implementation of the Del Moral’s and Bernton’s SMCABC algo-
rithm (Del Moral et al. 2006, 2012; Bernton et al. 2019) provided in the ABCpy
python package (Dutta et al. 2021). Propagating the particles is the most expensive
step of the algorithm because it involves the simulation of data under the model, i.e.,
at least N · M ′ model evaluations per iteration for N particles and M ′ samples per
parameter. In the overview given in Fig. 1, this step is labeled with 3 . However, the
algorithm is inherently parallel in the particle updates, and the implementation offers
parallel backends via Spark and MPI, of which we decided to use the latter. For code
availability, we refer to the https://doi.org/10.5281/zenodo.13810423).

In order to maximize the utilization of parallel computing resources, it is best
practice to parallelize the outer loops and optimize the repeatedly executed code.
Our implementation follows this logic by allowing ABCpy to parallelize the parti-
cle updates via MPI and implementing the ABM models with the highly efficient
BioDynaMo (Breitwieser et al. 2021, 2023) C++ simulation platform.
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Fig. 4 Software implementation and interfaces for the SMCABC sampling step ( 3 ) in Fig. 1. Persistent
BioDynaMo processes (green) reside on all server cores during calibration. The simulation objects that
ABCpy (blue) dynamically generates on theMPI ranks are connected to the respective BioDynaMo process
via stdin-stdout. Results are written to and retrieved from a disk allocated in RAM to enhance performance.
1 parameter proposal, 2 simulate data under the model, 3 compute morphometrics, and 4 evaluate
acceptance criterion (color figure online)

During our initial computational experiments, we discovered a bottleneck in the
current BioDynaMo version.Most of the execution time was spent starting the BioDy-
naMo simulation engine, more precisely, initializing the C++ interpreter cling (Vasilev
et al. 2012). Initialization became the dominant factor since the simulation of a single
neuron is very fast compared to the extensive simulations with billions of agents that
BioDynaMo supports. To mitigate this performance bottleneck, we avoid launching a
new simulation process for each parameter set. Instead, we start a persistent BioDy-
naMo simulation process for each MPI rank at the beginning of the calibration (here,
one per core), keep it alive, and exchange data with ABCpy using IO-redirection.
Figure4 summarizes this concept and the implemented interface between the ABCpy
and BioDynaMo software packages.

As ABCpy distributes the computation between the workers, a custom class facili-
tates the communication and data exchange with the active BioDynaMo processes. If a
given SMCABC-MPI rank requires a model run for a set of parameters, this controller
class requests the simulation from the BioDynaMo process running on the same core
and waits until the simulation has been completed. The process writes the results, i.e.,
the SWC file of the synthetic neuron and possibly the associated morphometrics, to a
RAM disk. After the simulation, the controller allows ABCpy to proceed–it retrieves
the results, possibly applies some post-processing, and evaluates if the proposal param-
eters are accepted. Avoiding the repeated startup overhead, we measured 10x speedup
compared to its initial version for simple models. We note that the more expensive the
model, the less the coupling affects the runtime.

The implementation of the Sobol SA is analogous; here, the parameters are known
a priori such that we assign different parameter combinations to different ranks and
process them one after another using the same interface. The initial parameters are
obtained from the python library SALib (Herman and Usher 2017).
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Fig. 5 Simulated data sets simulated under Model 1 (blue) and Model 2 (orange). The histograms are
computed on 104 simulated neurons (color figure online)

3 Results

In this section, we explore the numerical experiments and their results conducted to
foster an understanding of the stochastic models and the inverse problem. We first
investigate the models’ stochasticity to understand how the stochastic components
of the model influence the QoIs for a fixed parameter choice. With a Sobol SA, we
allow the model parameters to vary and explore how the variations affect the model
outputs. We then study the stochastic inverse problem for the mechanistic neuronal
growth Model 2 for synthetic data; in particular, we investigate how different choices
of morphometrics, statistical distances, and simulated data set sizes affect our ability
to recover the data-generating parameters. Afterward, we treat experimental data and
calibrate Model 1 and 2 such that they mimic pyramidal cells in the human and
mouse hippocampus (CA1 region) and extend our analysis beyond the QoIs with 3D
visualizations. Lastly, we comment on runtime and computational costs.

3.1 Model stochasticity

We analyze the influence of the stochastic model components on the QoIs (mor-
phometrics). We choose a fixed parameter vector �
 for each model and simulate
different neurons (i.e., samemodel, same parameter, different random seed). Table 3 in
Appendix B summarizes the parameter choice for each model and are taken from Bre-
itwieser et al. (2021). We generate 104 artificial neurons per model and compute the
QoIs. We then determine and visualize each model’s (marginal) distribution of the
QoIs.

Figure 5 shows histograms of the mean and standard deviation of the segment
lengths together with the number of segments and total length. Across all the QoIs,
Model 1 shows distributions that are significantly wider, less symmetric, and have a
heavier tail compared to the output of Model 2. The distributions of Model 2 are, in
most cases, symmetric and centered. The marginals of Model 2 appear to be similar to
the characteristic shape of the normal distribution; nonetheless, the Anderson-Darling
test allows us to reject the hypothesis that Model 2’s marginals follow a normal dis-
tribution at a significance level of 1%. Table 4 in Appendix B additionally depicts the
descriptive statistics of the marginals depicted in Fig. 5. These statistics underline and
quantify the previous observations, for instance, the apparently wider distributions of
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Fig. 6 First order and total sensitivity indices of the growth models. The vertical gray line indicates the
95% confidence interval of the index. The confidence interval does not account for the Monte Carlo error
of E[QoI ] (color figure online)

Model 1 reflect in a larger standard deviation. We remark that although the models
are similar and mainly differ in how they distribute resources while branching, the
QoI marginals show significant differences. Moreover, the presented data shows that
the neuron models are truly stochastic and they must consequently be treated in a
probabilistic setting.

3.2 Sensitivity analysis

We continue analyzing the behavior of the forward models, now striving to understand
if some parameter influences a given QoI and, if so, by howmuch. Therefore, we probe
the models with a global Sobol SA (Sobol 2001; Saltelli 2002; Saltelli et al. 2010). We
define each model’s parameter domain � ∈ R

n according to Table 5 in Appendix B.
For each model, Saltelli sampling results in K = N · (2 · dim(�) + 2) = 32768

parameter combinations for which we need to evaluate the model (we chose N =
4096). To account for the stochasticity of the model, we simulate M ′ = 20 samples
for each parameter combination to estimate the expectation value of the different
QoIs. Thus, we evaluate 6.6 · 105 artificial neurons per model to measure the first
oder and total sensitivity indices (S1, Stot ). We analyze the influence of the branching
probability (pbra), the resource consumption (R), and the elongation speed (v) on
the QoIs. We restrict ourselves to this set of parameter for two reasons. First, simple
experiments with the models showed that these parameter have a profound impact on
the generated morphology and, second, the models differ in the resource reallocation
while branching but tip agents in both models execute the same persistent biased walk.
We thus decided to focus on the parameter that differ between the models. The results
are displayed in Fig. 6.

We begin with discussing the similarities highlighted by the sensitivity analysis.
Figure6c shows that the mean segment length of both models reacts similarly to the
parameters. For both models, this QoI is primarily influenced by pbra and v while
R has no influence. This can be understood from realizing that the mean segment
length is the average distance that a tip agent migrates between two branching events.
The parameter v is the speed of the tip migration while pbar defines the likelihood
of branching per time unit. The resource consumption does not influence this pattern

123



   50 Page 18 of 40 T. Duswald et al.

and, thus, the corresponding sensitivity indices are very low. Both models share the
mathematical description of the tip migration which reflects in the sensitivity analysis.
This argument extends to the standard deviation of the segment length.

In contrast to the mean and standard deviation of the segment length, the number
of segments and the total length in Fig. 6a, b respond differently to the parameter
variations. The analysis shows that Model 1 is much more sensitive to the parameter
R. Considering the regime for very low values of R, Model 1 can repeatedly split
newly created branches leading to an exponential growth in the number of branches.
In the same scenario, Model 2 remains well controlled and continues to produce a
main brach with short side extensions. This realizations explains whyModel 1 is more
sensitive to R. For Model 2, the number of segments is primarily influenced by pbra .
Similar arguments hold for the total length, here the exponential growth outweighs
the linear growth parameter v for Model 1 while Model 2 is mostly sensitive to it. We
further observe thatModel 1 shows statistically significant gaps between the first order
and total sensitivity index, hinting at higher order effects. In its sum, these observations
underline the significant impact that the resource distribution has on the morphology.

3.3 Solving the stochastic inverse problemwith SMCABC

We study the stochastic inverse problem arising for mechanistic neuronal growth
models with the SMCABC algorithms altering the statistical distance measures, algo-
rithmic parameters, morphometrics, and data sets.We first treat synthetic data to verify
that we may successfully recover the data-generating parameter in a setting where the
model can reproduce the data well. The synthetic data sets used in the calibration are
subsets of the ones in the section analyzing the models’ stochasticity. We perform
extensive numerical experiments to showcase how the calibration algorithm behaves
under different circumstances. Afterward, we apply the SMCABC algorithm to the
data sets defined in Table 2 to determine which models adequately describe given
experimental data. The majority of the computational experiments deal with Model 2
because it models the structurally more complex part of the neuron (i.e., top part in
Fig. 2).

3.3.1 Synthetic data

We begin with calibrating Model 2 with synthetic data comprised of 500 synthetic
neurons. We attempt to find the posterior distribution for the same model parameters
(pbra , R, and v) considered in the SA. The synthetic data was generated with the
parameter choice p


bra = 0.38·10−1, R
 = 0.71·10−3, and v
 = 102; recovering these
parameter serves as test case throughout this section. We employ the morphometrics
to map the simulated neurons to R

n , effectively reducing a neuron morphology to
a n-dimensional random variable (n = 1, . . . , 4). We provide uniform priors for all
parameters, use 210 particles to approximate the posterior and run the algorithm for a
fixed budget of 5 ·107 growth-model simulations. We do not interrupt the algorithm in
between SMC iterates; we either automatically stop the calibration after the iteration
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that has exhausted the simulation budget, or if the algorithm’s runtime surpasses a
threshold Tmax .

Effect of the morphometrics
First, we investigate the effect of the choice of morphometrics. Intuitively, they

capture the information of the neuron morphology. If the morphometrics capture
insufficient information, the algorithm will not be able to recover the data-generating
parameter for the simple reason that the information needed for their inference is not
considered. Thus, the first experiment explores the convergence of the posterior for
different combinations of morphometrics, specificallyM1, 2, 3, and 4, i.e., the num-
ber of segments, the mean and standard deviation of the segment lengths, and the total
length. This experiments uses the Wasserstein distance to evaluate (3) and M ′ = 50
samples per parameter.

Figure 7 shows how different morphometrics choices affect the posterior marginals.
From (a) to (d), we add one dimension to the morphometrics at a time. We begin with
the mean of the segment lengths (a) and add the standard deviation (b), the number
of segments (c), and, lastly, the total length (d). All four plots depict the evolution of
the posterior marginals over the SMC iterations. The marginals are Gaussian kernel
density estimates (KDEs) computed from the particles and associated weights. Early
iterations appear dark (black, purple), and final iterations in bright colors (orange,
yellow). For convenience, the data-generating parameters p


bra , R

, and v
 are indi-

cated with vertical, dashed, and black lines. We judge the algorithm performance by
its ability to recover p


bra , R

, and v
, i.e., good algorithmic setups are expected to

show posterior marginals condensing around the vertical black lines. This type of
visualization will reoccur in the other numerical experiments.

From Fig. 7, we see that the mean segment length is not sufficient to recover the
parameter. The posterior in (a) is very wide indicating high parameter uncertainties.
Adding the standard deviation of the segment length improves upon the previous
case, we find sharper posterior marginals, however, their peaks show a slight offset
incorrectly identifying the parameters v and R. The parameter pbra centers around
the correct value, however, the width of the posterior again indicates low confidence.
Adding the number of branches to theQoIs significantly improves themarginals’ qual-
ity; all three parameter peak at the data-generating parameter and are strongly centered
indicating good confidence in the identified parameters.We emphasize this substantial
improvement in identifying the branching probability which can be understood from
the results of the SA; it demonstrated that the number of branches of Model 2 is very
informative concerning this parameter. Lastly, adding the total dendritic length seems
to neither harm nor further improve the posterior.

To further verify the posterior quality, we measured the Wasserstein distance
between a second dataset generated with identical parameters and the one used for
calibration. The measured distance is in line with the final ε value supporting the
claim that the algorithm found a good posterior distribution whose simulations are
close to indistinguishable from the calibration data. While there are barely differences
in the posterior quality of (c) and (d), we favour the latter for computational reasons.
Using four instead of three morphometrics converged quicker and the overall runtime
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Fig. 7 Convergence of theWasserstein posterior under different choices ofmorphometrics. The information
captured by the morphometrics increases from a to d, and the posterior improves accordingly
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Fig. 8 Convergence of the ABC algorithms over SMC iterations for different distribution-based distance
metrics. All algorithms can simulate 106 datasets of cardinality M ′ = 50; however, a and b stalled after per-
forming 82% and 85% of the allowed simulations, respectively. Wasserstein better identifies the branching
probability, see Fig. 7d

was roughly the half. For all subsequent experiments, we use the four morphometrics
M1, 2, 3, 4.

Effect of different statistical distances
Weproceedwith analyzing howdifferent statistical distances (Wasserstein (Bernton

et al. 2019), sliced-Wasserstein (Nadjahi et al. 2020), KL (Jiang 2018), γ (Fujisawa
et al. 2021)) affect the calibration results. We run the SMCABC algorithm with the
same parameters but vary the statistical distances. Figure8 displays our findings. The
interpretation of the graphs follows the previous section; each plot shows the evolution
of the posterior marginals over the SMC iterations with the data-generating parameter
indicated by vertical, dashed, and black lines.

The experiment shows that the Wasserstein distance in Fig. 7d as well as the
KL and γ -divergence in Fig. 8a and (b), respectively, recover the parameter well
and find concentrated posterior distributions around the reference values. KL and
γ divergence seem to require slightly fewer SMC iterations to concentrate around
the data-generating parameter of the elongation speed v and resource consumption
R. This can be seen from comparing Fig. 7d, iteration 82 with Fig. 8a, iteration 78
and b, iteration 76, although this observation is unlikely to be statistically significant.
Evidently, the Wasserstein distance outperformed the other distances in identifying
the branching parameter.

Neither the KL divergence nor the γ divergence exhausted the total number of
dataset simulations. After they used 82% and 85% of their budget, respectively, indi-
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Fig. 9 Convergence of the Wasserstein ABC algorithms over SMC iterations for different sizes of the
synthetic datasets. All algorithms simulate less than 5 · 107 neurons

vidual particles got trapped in regions with low posterior probability, which caused
a significant load imbalance, making it infeasible to let the algorithm run until the
end. Similar problems were not observed for the Wasserstein-based inference, which
reliably converged in all calibration runs. The sliced-Wasserstein distance failed to
discover the data-generating parameter in this particular case (Fig. 13 in Appendix A).
While the posterior marginals peak at the correct values, the posterior is significantly
wider than for the other statistical distances.

Effect of simulated dataset size
The previous experiments used M ′ = 50 synthetic neurons per parameter. This

number was motivated by the original work onWasserstein-ABC (Bernton et al. 2019)
in which the authors used a sample size of M ′ = 100 to calibrate the mean vector of
a bivariate Gaussian model. Since generating a neuron morphology is disproportion-
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ally more expensive, we began experiments with M ′ = 50 neurons and allowed the
same number of dataset simulations (106) as Bernton et al. (2019). To reduce the algo-
rithm’s runtime, Bernton et al. (2019) considered less expensive approximations to the
Wasserstein distance, e.g., Hilbert and swapping distances, because its computation
accounted for large fractions of the overall runtime. Here, simulating 50 synthetic neu-
rons is roughly 100 times more time-consuming than the distance computation; thus,
we investigate how the sample size M ′ affects the posterior quality in this practical
example. Allowing the same number of total neuron simulations (5 · 107), we run the
algorithmwithM ′ ∈ {10, 25, 50, 100} samples per parameter while usingM1, 2, 3, 4
and the Wasserstein distance.

Figure 9 shows the evolution of the posterior marginals considering synthetic
datasets ysim of cardinality a 100, b 25, and c 10. Figure7d shows the identical exper-
iment for 50 simulated neurons per parameter which recovers the data-generating
parameter well. First, in Fig. 9a, doubling the number of samples from 50 to 100 gives
more confidence in the prediction of the model for a given set of parameters; how-
ever, the computational cost double and render the execution of many SMC iterations
infeasible. After 67 iterations, the algorithm exhausts its simulation budget and yields
insufficient posterior marginals to identify the data-generating parameters. Comparing
similar iterations (62, M ′ = 50; 67, M ′ = 100), we may see a slight advantage for
using more samples.

Next, we reduce the sample size to (b) 25 and (c) 10 per parameter. We expect that
lowering the sample size allows the number of SMC iterations to increase. Simul-
taneously, the statistics of the model at a given parameters set are more uncertain;
colloquially, we may say that the coupling between parameter and QoI space is looser.
For both cases, the posterior marginals in Fig. 9 initially converge quickly. Towards
the end, the sampling got inefficient and developed a load imbalance with individual
particles holding up the algorithm. We eventually stopped the algorithm after it ran on
the server as long as the reference results for 50 samples. To find a posterior distribu-
tion similar in quality, the algorithm with n = 25 and n = 10 samples used only 69%
and 41% of the simulation budget, respectively. While 50 samples per parameter took
roughly 4.5 days to recover the parameter, (b) and (c) achieved the same in roughly
2 days. Thus, the runtime is significantly reduced by lowering the sample size while
still achieving a similar posterior quality. Additional benefits are not observed, i.e.,
the posterior is similar but does not show higher densities.

3.3.2 Experimental data

We now shift our attention towards experimental data. We begin with calibrating
Model 2 on the apical dendrites of the data sets listed in Table 2 using the morphomet-
ricsM1, 2, 3, and 4 (see Table 1). The apical dendrites refers to the structures displayed
above the soma in Fig. 2c. We approximate the posterior with 210 particles, run the
algorithm for a fixed budget of 5 · 107 neuron simulations (106 data sets ysim of car-
dinality 50), and use the Wasserstein distance. In contrast to using synthetic datasets,
the reference parameters to judge the quality of the solution are unknown; hence, we
fall back to the predictive check described earlier, i.e., we sample 210 parameter from
the posterior, evaluate the model M ′ = 50 times per sample, compute the QoIs, and
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Fig. 10 a Convergence of Wasserstein posterior marginals and b predictive check of Model 2’s calibration
on experimental data D1 (human, apical). The predictive check shows simulated samples drawn from the
posterior distribution (green KDE) together with the data obtained from neuromorpho.org (blue histogram,
orange KDE) (color figure online)

compare them with the data. Our focus lies on finding the posterior distribution for
a given model–whether or not the model adequately describes the data is beyond the
scope of the present article and designing rules for specific resource-driven neuron
models for given data is left for future work.

D1 - pyramidal cells in human hippocampus (CA1). Fig. 10 shows the result of
calibrating Model 2 with data D1. Panel (a) shows the familiar evolution of the
posterior marginals over the SMC iterations. The marginals show a convergent behav-
ior and accumulate in certain regions, specifically the KDEs are centered around
v
 ≈ 0.83 · 102, R
 ≈ 0.44 · 10−3, and p


bra ≈ 0.72 · 10−1. Panel (b) shows the
results of the predictive check – data in blue (histogram) and orange (KDE), model
predictions in green (KDE). The center (mean) of the marginal distributions of data
and predictions match well. The number of segments and the total segment length
seem to behave similar for the experiment and the calibrated simulation. The mean
and standard deviation centers correctly but the model’s prediction are too narrow
indicating that additions to Model 2 may be necessary to better describe the data.

D2 - pyramidal cells in mouse hippocampus (CA1). Figure11 shows the result of
calibratingModel 2with dataD2. The interpretation is analogous to Fig. 10. In contrast
toD1, we obtain posterior marginals more concentrated around specific values, which
can be seen from the higher density values of marginals. In particular, these densities
are higher for the elongation speed and the resource consumption.Moreover, the shape
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Fig. 11 a Convergence of Wasserstein posterior marginals and b predictive check of Model 2’s calibration
on experimental data D2 (mouse, apical). The predictive check shows simulated samples drawn from the
posterior distribution (green KDE) together with the data obtained from neuromorpho.org (blue histogram,
orange KDE) (color figure online)

of the QoI marginals appears to match the shape of the data better compared to D1.
The width of the standard deviation is, again, underestimated by the model. For D2,
the marginals peak at v
 ≈ 0.58 · 102, R
 ≈ 0.59 · 10−3, and p


bra ≈ 0.62 · 10−1. It
appears as if Model 2 is better suited to describe pyramidal cells found in mice than
the ones found in humans.
Comparison beyond the QoIs

The selected QoIs (M1, 2, 3, 4) reduce the neuron morphology to a point in R
4,

representing a significant, irreversible compression of the information. To further
investigate if Models 1 and 2 can produce meaningful, synthetic neurons, we visualize
a set of neurons after calibration together with the calibration data.

We proceed as follows. First, we use Model 1 and 2 to describe the pyramidal cell’s
basal and apical parts, respectively, akin to the concept presented in Fig. 2b. Using
the Wasserstein ABC algorithm, we then calibrate both models as in the previous
section. The calibration of Model 1 follows the calibration of Model 2 with datasets
extracted from the basal structures. We select a parameter set from the resulting pos-
terior marginals via a maximum a posteriori estimate and subsequently simulate 103

neurons using the fixed parameter set. Compared to Fig. 2b, we lower the bias and
increased the persistence of the random walk governing the growth. Lastly, we collect
the basal and apical QoIs of the data and simulations, normalize them concerning the
variance of the data marginals, and obtain two point clouds in R

8. We assign a simu-
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Fig. 12 Simulated neurons after calibration (left of each panel next) together with experimental pyramidal
cells (Benavides-Piccione et al. 2019) (mouse, hippocampus). Visualization with ParaView

lation to each data point via the shortest Euclidean distance to form data-simulation
pairs.

Figure 12 compares simulated and experimental pyramidal cells by displaying their
full 3D structure. Panels (a)–(f) shows neurons that appear to be similar regarding the
characteristic morphology. Closer investigation also reveals differences, in particular,
the apical section (top part) of the experimental neurons shows a characteristic, straight
main branch. The simulated neurons develop a similar hierarchy, e.g., a main branch
with extensions; however, this feature is more emphasized in the experimental neurons
and the main branch barely deviates from a straight line.

While (a)-(f) yield good a agreement, some neurons show morphological features
that are beyond the QoIs. For instance, in Panel (g) and (h), the experimental neurons
show a main branch that effectively splits into two. Such features are not captured by
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the selected set of QoIs; wemay not expect that calibration drives the model parameter
in a suitable range. Moreover, it is questionable if the simplistic Model 2 can produce
such growth. Lastly, Panel (i) shows an example for which the curvy main branch
folds, a feature that can occur in the simulation but is not readily observed in the data.
These limitations seem inherent to the simplistic model and can be partially bypassed
with different weights for the bias and persistence of the walk.

3.4 Runtime and computational cost

We omit detailed benchmarks since they strongly depend on the model, and thus,
precise numbers may not be adequate estimates for future research endeavors.
Nonetheless, we would like to give a few numbers for ballpark estimates.

The numerical experimentswere conducted on two different systems. System1 is an
Intel Xeon E7-8890 CPU with 72 physical cores distributed among four sockets with
1 TBRAM. The system’s maximal clock frequency is 3.3 GHz. System 2 is a compute
node with two sockets, each hosting an AMD Epyc 7713 CPU with 64 physical cores
and 1 TB RAM; hence, a total of 128 cores and 2 TB RAM. The system’s maximal
clock frequency is 3.7 GHz. On both systems, we run the experiments in Docker
containers.

For our calibration, we capped the runs at 50 million simulated neurons. We stop
the calibration after the iteration crossing this threshold has finished. For experiments
with the Wasserstein distance and synthetic data from Model 2, the calibration took
roughly 95h on system1 (using 72 cores) and 62h on system2 (using 96 cores). Taking
into consideration the total number of neurons sampled during this time, system 1 and
system2achieve a throughput of roughly 148 and225neurons per second, respectively.
Per core, the two systems yield a throughput of 2.06 and 2.35 neurons per second.

We note that the previous measurements include the Wasserstein distance calcu-
lation. Bernton et al. (2019) pointed out that computing the Wasserstein distance is
expensive compared to evaluating summary statistics and suggested cheaper alterna-
tives such as the Hilbert or swapping distance. However, they considered models that
are significantly faster to compute (e.g., a bivariate normal distribution); for the case
at hand, we usually simulate datasets of M ′ = 50 neurons, which takes approximately
20–25s. Computing the Wasserstein distance numerically as in (Flamary et al. 2021;
Dutta et al. 2021; Bonneel et al. 2011) takes significantly less than a second and,
thus, the computational time of the Wasserstein distance computation is none of our
concerns.

We further remark that, in some cases, we observe substantial imbalances in the
computational workload across the MPI ranks (similar to (Dutta et al. 2021, Fig. 5)).
For instance, some SMC iterations in the experiment displayed in Fig. 8c ran on only
four ranks for extended periods of time. Scalability issues were partially addressed in
(Dutta et al. 2021, Sect. 3) suggesting using dynamic work sharing in an MPI context.
However, the load imbalances seem inherent to the algorithm more than they can be
attributed to the implementation.
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4 Discussion

Before reflecting the individual computational experiments, wewish to emphasize that
our experiments collectively demonstrate thatABCcombinedwithmorphometrics and
statistical distances presents a potent tool for addressing the statistical inverse problem
for neuronal growth models. The remainder of the section structurally follows the
preceding one.

4.1 Sensitivities

Weanalyzed the influence of parameter variations on the expectation value of theQoIs,
utilizing Saltelli’s method and computing the Sobol indices. The results showed that
almost all QoIs are influenced by a set of parameters and cannot typically be explained
by a single parameter in isolation. The discrepancies between the total effect index
and the first-order sensitivity index hint at higher-order effects. In sum, this shows that
even simple models yield complex emerging behavior.

We recall that sensitivities measure variation and, thus, information. If certain QoIs
are sensitive to parameter variations, these QoIs likely contain information that may
be leveraged during Bayesian inference to find the posterior distribution of the param-
eter. On the contrary, QoIs that are insensitive to the model parameters are unlikely
to add information that can be leveraged during inference. Such QoIs should be omit-
ted because their statistical fluctuations may pollute the distance metric. Here, our
sensitivities verified that the selected morphometrics contain relevant information for
inferring the parameters.

4.2 SMCABC on synthetic data

We performed various numerical experiments with synthetic data and Model 2, inves-
tigating the choice of morphometrics, influences of statistical distances, and the
number of samples per parameter. The results are depicted in the Figs. 7, 8, and 9,
respectively. We highlight that the experiments clearly demonstrate that ABC with
statistical distances and morphometrics can uncover the posterior distributions for
simple, resource-driven neuronal growth models.

Effect of the morphometrics
To infer parameters, the QoIs must be informative for the considered parameter

set. This effect is demonstrated in Fig. 7 in which we gradually increase the infor-
mation available for parameter inference by adding one QoI at a time. By leveraging
the statistical distances, changing datasets and QoIs becomes trivial endeavor as they
automatically consider the distribution without the need of defining appropriate sum-
mary statistics for the additional QoIs. This highlights the versatility of the proposed
framework and how easy it is to employ in practice. We accentuate that this feature
allows the method to easily generalize to more complex neuron models. For a given
model, SA helps quantifying which QoIs are sensitive to parameter variations. These
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QoIs may then be chosen for the inference–ABC based on statistical distances then
automatically accounts for the added information in the comparison step (3).

We initialized all experiments in Fig. 7 with uniform priors. In practical application,
Bayesian frameworks support leveraging previous information. As new data becomes
available or as new QoIs are computed, the previously determined posterior may
serve as a prior to the new inference problem. This technique may be relevant when
approaching more intricate models requiring more intensive calculations. We redirect
the reader to Oden et al. (2017) and Lima et al. (2018) for more details.
Effect of different statistical distances

Figure 8 shows the convergence of the posterior marginals for different statistical
distances. Despite their different characteristics, the SMCABC sampler (Del Moral
et al. 2012; Bernton et al. 2019) finds posterior distributions in agreement with the
data-generating parameter across most statistical distances. Comparing the Wasser-
stein distance to the KL and γ divergence, we observe that the latter requires fewer
SMC iterations to concentrate around the data-generating parameter for the elon-
gation speed and resource consumption. However, the Wasserstein distance better
identifies the branching probability. Surprisingly, the sliced Wasserstein performed
poorly even though it approximates the Wasserstein distance in high-dimensional set-
tings; it appears as if this approximation failed capture sufficient information in this
low-dimensional use-case to infer the parameters. Overall, the Wasserstein distance
resulted in the most efficient and reliable calibration algorithm, i.e., it found the best
posterior distributions as measured by the density at the data-generating parameters
while being reliable in its convergence.

When running with KL and γ , we encountered issues with the SMCABC sampler.
In particular, we aborted both algorithms after exhausting 82% and 85% of their simu-
lation budget, respectively, because individual particles got trapped in low probability
regions preventing the algorithm from further progressing. Here, we used α = 0.6 for
all four algorithms, determining how aggressively the SMC sampler moves forward.
We suspect that a different choice of α would aid the convergence of these algorithms.
A closer investigation of this hypothesis is of interest for the future but outside the
scope of this manuscript. Since the purpose of this experiment was to better under-
stand the effects of different distance measures, we fixed all parameters, including α,
between experiments.

Effect of simulated dataset size
The posterior quality of ABC algorithms generally improves with the computing

resources that can be allocated to it. Themore data available, the better simulations can
be compared with data. The more SMC iterations are executed, the better the results.
Themore simulations are executedper parameter, themore profound the understanding
of the model’s statistical properties. Moreover, the more simulated and observed data
is available, the better the estimates of the statistical distances, see Fig. 3.

From our experiments in Fig. 9, we conclude that Wasserstein ABC finds the data-
generating parameter even when only small sample sizes are used, e.g., M ′ = 10 or
M ′ = 25. In the absence of computational limitations, it is clear that larger sample sizes
are favorable. We decided to use M ′ = 50 samples per parameter for the experiments
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on experimental data as this seems to be the best compromise between computational
runtime and reliability given our computational resources.

4.3 SMCABC on experimental data

In both cases, i.e, the apical dendrites of human and mouse pyramidal cells in the hip-
pocampus, Wasserstein ABC finds sharp posterior distributions indicating significant
confidence in the parameter estimation, see Fig. 10 and 11. The posterior marginals
of the mouse data show higher densities and, thus, indicate more confidence in the
parameter values. The predictive check shows that the model’s prediction and the data
agree concerning their mean values but also reveals that the predictions underestimate
the width of someQoI distributions, for instance, the standard deviation of the segment
lengths. This also applies to the mean segment length of the human pyramidal cells.
The datasets show larger variations than the models predictions for these cases.

Figure 12 presented nine pairs of simulated and experimental neurons to facilitate
a more detailed comparison. Some of the pairs, i.e., (a)-(f) underline the similarities
between simulation and experiment while others expose shortcoming of the models.
We point out the examples (g) and (h) for which themain branch of the apical dendrites
breaks into twoparts.NeitherModel 2 nor the selectedQoIs reflect this feature, thus,we
cannot expect to find it in the calibrated neurons.Model extensions considering random
walk weights and branching probabilities depending on the resource parameters bear
the potential to reduce this reality gap in future work.

George Box famously described this ubiquitous reality gap between natural phe-
nomena and mathematical models as all models are wrong, but some are useful.
Whether any model, e.g., Model 1 or 2, is a useful approximation to real neurons
depends on the subsequent downstream applications. In other words, different appli-
cations require the models to accurately mimic distinct neuronal properties that reflect
in a set of carefully chosen, application-dependent QoIs. For instance, simulating
the detailed electro-physiology of a single neuron imposes different requirements on
synthetic neurons than simulating a cortical region involving thousands of neurons.
Researchers implementing a simulation based on synthetic neurons must critically
reflect on whether the neuron’s QoIs match the problem sufficiently well.

While the models are simplistic and impose a limit on the agreement of data and
simulation within the predictive check, the experiment demonstrated that Wasserstein
ABC can find the posterior distributions explaining limited features (selected QoIs)
of the observed data for two different types of pyramidal cells.

5 Conclusion

This investigation explored approximate solutions for the Bayesian inverse problem
encountered in the context of neurongrowthmodels.We investigated the ability ofmor-
phometrics to extract essential characteristics of neuronal morphology and explored
how statistical distances can be effectively used to incorporate this information into
SMCABC samplers. To achieve this, we initially focused on simplified mathemati-
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cal models for illustrative purposes. We embedded these models into a more general
abstract concept–the resource-driven neuron growth model–drawing upon and sum-
marizing existing literature. Finally, to enhance accessibility and potential adoption of
this methodology, we presented an implementation efficiently coupling BioDynaMo
and ABCpy.

Our investigations on synthetic data demonstrate the effectiveness of ABC with
various statistical distances, e.g., the Wasserstein distance and KL/γ divergence, in
recovering the data-generating parameters.WhileWasserstein yielded superior results
within the specific experimental setup, further investigation is necessary to confirm
general advantages due to potential bias towards specific parameters, particularly the
SMC parameter α = 0.6 used in this study. The proposed framework facilitates the
seamless integration of additional structural information (morphometrics) into the
statistical analysis, demonstrating the flexibility of the approach. Additionally, our
findings reveal that the employed SMC sampler achieves satisfactory convergence
even with few simulations per parameter. Applications to experimental data confirm
successful model calibration through the algorithm. We further find that the simple
mathematical models describe data derived from mouse pyramidal cells better than
human counterparts. Beyond the analyzed quantities of interest, a comprehensive com-
parison of complete 3D structures revealed additional similarities and discrepancies
between simulation and experiment.

Our framework holds significant promise for advancing research in mechanistic,
agent-based neuron growth models and neuroscience. The abstract, resource-driven
growth model is a robust foundation for systematically exploring diverse realizations
and constructing detailed representations of specific neuron types. This endeavor is
supported by the flexibility of the framework pairing morphometrics and statistical
distances as it allows for seamless adaptation to new data and relevant quantities of
interest. Furthermore, themethod paves theway for applyingBayesianmodel selection
and other computational techniques from related fields such as predictive computa-
tional science (Oden et al. 2017). We believe the community can significantly benefit
from adopting these ideas; however, as highlighted by Robert et al. (2011), critical
assessment of the approximations inherent in ABC remains crucial when employing
the posterior for model selection.

In a broader context, the proposed framework possesses the potential to contribute
to the classification of diverse neuronal types by linking the neuron’s morphology
(captured through morphometrics), its functional role, and mathematical models.
Moreover, this approach could support the simulation of large-scale brain struc-
tures, enabling the exploration of phenomena such as cortical lamination (Bauer et al.
2021) by calibrating neuron models for different brain regions. Additionally, a proper
understanding of the stochastic processes driving neuronal growth may empower the
development of heuristic, stochastic, and biologically-inspired algorithms for design-
ing neural network architectures tailored for specific tasks.

While our experiments effectively demonstrate themethod’s potential, we acknowl-
edge certain limitations in our approach. The utilized models and quantities of interest
are intentionally kept simple for illustrative purposes and likely require further refine-
ment for broader applicability. Furthermore, the employed datasets are relatively small,
and additional data points would facilitate a more thorough comparison of simulation
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and experiment. Additionally, the algorithm’s runtime scales linearly with the model’s
runtime. More complex models may require increased computational resources or the
exploration of computationally cheaper surrogates (e.g., Gaussian processes (Rocha
et al. 2022)) in place of the current models. Lastly, the SMC algorithm occasionally
encounters convergence issues (specifically with KL/γ divergence) where particles
become trapped in low-probability regions.

Addressing the above limitations presents promising directions for future research.
In particular, developing more detailed and complex neuron growth models based on
the presented abstract concept, as well as their verification with the SMCABC frame-
work, is a crucial step for further improvements. Different models and neuron types
beyond pyramidal cells deserve attention and should be the subject of future studies.
Extensions considering growth of multiple, interacting neurons or activity dependent
growth presents another interesting avenue. With new neuron types and more exten-
sive simulations, additional, more involved morphometrics must be considered when
mapping neurons to a low-dimensional vector space. Such simulations may also bene-
fit from hierarchical Bayesian calibration procedures allowing to tackle a sequence of
simpler sub-problems (Oden et al. 2017; Lima et al. 2018). Concerning the ABC algo-
rithm, one should address the issue of single particles limiting calibration progress.
Intuitively, many failed attempts to update a single particle signal that it is trapped in a
low probability region. Quantifying this information and including it in the resampling
step seems a promising avenue for operating the algorithm evenmore smoothly. Lastly,
the posterior distribution contains information that can be used to choose between dif-
ferent mathematical models (see OPAL algorithm presented by Oden et al. (2017)),
which would be a substantial step forward. These efforts would collectively support
the method’s robust application in more complex scenarios.

In conclusion, this work establishes SMCABC based on statistical distances and
morphometrics as a potent tool for approximating the solution of the Bayesian inverse
problem and, therefore, calibrating neuronal growth models.

Appendix A: Sliced-Wasserstein distance

Calibration of Model 2 with the sliced-Wasserstein distance and synthetic data.
See Fig. 13.

Fig. 13 Convergence of the ABC algorithms over SMC iterations for the sliced Wasserstein Metric
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Appendix B: Parameter and descriptive statistics

See Tables 3, 4, 5.

Table 3 Parameter sets for
model stochasticity study, see
Fig. 5

Model 1 Model 2
Parameter Value Parameter Value

p

bra 0.006 p


bra 0.038

R
 0.85 · 10−3 D
 0.71 · 10−3

v
 50 v
 100

Table 4 Descriptive statistics of the distributions depicted in Fig. 5

Model 1 Model 2
M1 M2 [μm] M3 [μm] M4 [μm] M1 M2 [μm] M3 [μm] M4 [μm]

mean 32.44 43.31 34.77 1249.23 38.40 60.02 42.80 2279.70

std 18.14 13.32 7.71 517.77 8.47 4.34 2.35 419.44

min 3.00 21.97 0.01 444.09 11.00 42.59 30.73 893.79

25% 19.00 35.17 29.42 867.12 33.00 57.07 41.52 1993.24

50% 29.00 40.00 33.65 1154.93 39.00 59.68 42.79 2256.92

75% 43.00 47.42 38.90 1525.91 43.00 62.43 44.00 2554.55

max 147.00 148.11 71.07 4840.67 77.00 93.85 84.81 4271.21

Table 5 Sensitivity analysis: parameter bounds for � for the different models

Model 1 Model 2
Parameter Min Max Parameter Min Mmax

pbra 0.003 0.01 pbra 0.003 0.01

R 0.4 · 10−3 1.2 · 10−3 R 0.4 · 10−3 1.2 · 10−3

v 30 100 v 30 100
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Appendix C: Algorithms

Simulation logic and agent algorithms. This appendix gives pseudo-code of the
simulation logic and the algorithms that govern the agents during the neuronal growth
simulation.

Algorithm 1 BioDynaMo’s simulation protocol.
Parameter: T simulation time, dt time step
t = 0
while t < T do

Set up Iteration
Propagate Static Information
for all Agents a do

Update Static Information
Execute Agent Algorithm � Neuron Model: rules / behaviors
Compute Mechanical Forces
Discretize
Propagate Static Information (Agent)

end for
Tear down Iteration
Update the Environment
Export Visualization and Data
Increment time: t ← t + dt

end while

Algorithm 2Model 1. The algorithm is embedded in Alg. 1, line 7.
Parameter: bifurcation probability pbra , resource consumption R, elongation speed
v, weights w1,2,3, external gradient ∇φ, resource threshold rmin
Agent Attributes: resource r , if agent is tip s (boolean), start point �xs , end point �xe,
length l.
if s = true and d > dmin then

�d1 ∼ U (−1, 1)3
�d2 = (�xe − �xs )/l�d3 = ∇φ((�xe + �xs )/2)�d3 ← �d3/|| �d3||
�y = ∑3

i=1 wi �di � correlated, biased, random walk
�xe ← �xe + v�y � elongation
r ← r − R � reduce resource
if z ∼ U (0, 1) < pbra then

Trigger Bifurcation
end if

end if
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Algorithm 3Model 2. The algorithm is embedded in Alg. 1, line 7.
Parameter: branching probability pba , resource consumption R, elongation speed v,
weights w1,2,3, external gradient ∇φ, resource threshold rmin, start resource r0
Agent Attributes: resource r , if agent is tip s (boolean), start point �xs , end point �xe,
length l.
if d > dmin then

�d1 ∼ U (−1, 1)3
�d2 = (�xe − �xs )/l�d3 = ∇φ((�xe + �xs )/2)�d3 ← �d3/|| �d3||
�y = ∑3

i=1 wi �di � correlated, biased, random walk
�xe ← �xe + v�y � elongation
r ← r − R � reduce resource
if z ∼ U (0, 1) < pbra and s = true then

Trigger Branch
Set resource of new branch to r0

end if
end if
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